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Abstract This paper presents necessary and suffi-
cient conditions for the existence of bright/dark solitary
solutions in the Hodgkin–Huxley model. The second-
order analytic solitary solutions are derived using the
generalized differential operator technique. It is shown
that the heteroclinic bifurcation in theHodgkin–Huxley
model yields a symmetry breaking effect. Trajectories
of solitary solutions before the bifurcation lie on man-
ifolds of one of the saddle points and the separatrix
between periodic and non-periodic solutions. A new
separatrix emerges after the heteroclinic bifurcation—
but solitary solutions do not lie on this trajectory. This
symmetry breaking effect is demonstrated using ana-
lytic and computational experiments.
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1 Introduction and motivation

Since it was first published in 1952, the Hodgkin–
Huxley model [7] remains one of the cornerstones of
modern neuroscience. Though originally it was devel-
oped to model the propagation of action potentials in
the squid giant axon, in more recent years the model
has been applied to various fields of research includ-
ing information representation [13], pattern recognition
[28], noise-induced synchronization [23] and small-
world networks modeling [9].

In this paper, the following Hodgkin–Huxley model
is considered:

ut = uξξ + u (u − k) (u − 1) ; k ∈ R. (1)

This version of the Hodgkin–Huxley model is also
sometimes referred to as the FitzHugh–Nagumomodel
[2,15].

Although there have been extensive numerical stud-
ies of theHodgkin–Huxleymodel [1,4,6,16], construc-
tion of analytical solitary wave solutions remains an
essential step toward fully understanding the phys-
ical meanings of nonlinear processes occurring in
Hodgkin–Huxley models. Since Hodgkin–Huxley sys-
tem models the propagation of neural impulses, the
derivation of dark/bright solitary solutions to this sys-
tem would support the hypotheses that nerve impulses
propagate via solitary waves [5,12] and enable the fur-
ther investigation of such propagation phenomena.

There are a number of papers dealing with solitary
solutions to (1) [3,24,29]; however, explicit conditions
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of the existence of solitary solutions in the space of the
equation parameters and the space of initial conditions
are not given. In this paper, the following techniques
are utilized for the construction of analytical solitary
solutions: Inverse balancing is used to determine nec-
essary existence conditions; the generalized differential
operator technique enables the derivation of sufficient
existence conditions of solitary solutions; linear recur-
ring sequences transform the series solutions generated
by the generalized differential operator technique into
a closed form.

The construction of analytical solitary solutions
enables the analysis of phase plane phenomena occur-
ring in the Hodgkin–Huxley model. One of the param-
eters of the system is designated as the control param-
eter. The main objective of this paper is to demonstrate
that the heteroclinic bifurcation in theHodgkin–Huxley
model yields a symmetry breaking effect of bright/dark
solitary solutions.

2 Preliminaries

A short overview of the techniques that are required
to construct analytical dark/bright solitary solutions to
(1) is given in this section. Firstly, theHodgkin–Huxley
model is transformed into an ordinary differential equa-
tion (ODE) via the wave variable substitution. How-
ever, it will be shown that the construction of solitary
solutions to the transformed equation is not directly
possible. Thus, a narrowed equation (which is an equa-
tion that yields the transformedHodgkin–Huxley equa-
tion when differentiated) must be considered. After
these transformations, the generalizeddifferential oper-
ator technique and linear recurring sequences can be
used to construct closed-form analytical solitary solu-
tions to (1). These techniques are described in Sects.
2.2 and 2.3.

2.1 The transformation of the Hodgkin–Huxley
equation

Equation (1) can be transformed into an ordinary differ-
ential equation using the wave variable transformation
x := ωξ + vt;ω, v ∈ R [10,20]:

− vy′
x + ω2y′′

xx + y
(
y − k

) (
y − 1

) = 0, (2)

where y = y(x).

It is convenient to rename the coefficients of (2) and
state the Hodgkin–Huxley equation in a more general
form:

y′′
xx + by′

x = a0 + a1y + a2y
2 + a3y

3; b, ak ∈ R.

(3)

Initial conditions on (3) read:

y (c) = u; y′
x

∣∣∣∣
∣
x=c

= v; c, u, v ∈ R. (4)

In the remainder of this paper, solitary solutions to the
Cauchy initial value problem (3), (4) are considered.

2.2 Extended and narrowed differential equations

Consider two initial problems on differential equations
of different orders:

z′x = Q (x, z) ; z(c) = u; (5)

and

w′′
xx = R

(
x, w,w′

x

) ; w(c)=u; w′
x

∣∣∣∣∣
x=c

=v.

(6)

It is proven in [19] that if (6) is obtained by differenti-
ating both sides of (5), then the solutions to (5) and (6)
are connected by the relationship:

z(x; c, u) = w
(
x; c, u, Q(c, u)

)
. (7)

Thus, the solution to (5) also satisfies (6) for initial
conditions that are on the curve v = Q(c, u).

2.3 The construction of closed-form solutions

2.3.1 Solitary solutions

Let us consider solitary solutions of the following form
[26]:

y = σ

∏m
k=1

(
exp

(
η (x − c)

) − yk
)

∏m
k=1

(
exp

(
η (x − c)

) − xk
) , (8)

whereσ, η ∈ R are constants and yk, xk; k = 1, . . . ,m,
may depend on initial conditions u, v.

The analytical expression (8) can be simplified by
the following substitution:

x̂ := exp
(
ηx

) ; ĉ := exp
(
ηc

)
. (9)



Symmetry breaking in solitary solutions 573

Using (9) on (8) yields:

ŷ = ŷ (̂x) = y (x) = σ
Y

(
x̂
ĉ

)

X
(
x̂
ĉ

) , (10)

where

X (ξ) :=
m∏

k=1

(
ξ − xk

) ; Y (ξ) :=
m∏

k=1

(
ξ − yk

)
. (11)

2.3.2 The generalized differential operator technique

Let us consider a general nth-order ODE of the follow-
ing form:

w(n)
x = P

(
x, w,w′

x , . . . , w
(n−1)
x

)
. (12)

Initial conditions on (12) read:

w(k)
x

∣
∣∣∣∣
x=c

= uk; k = 0, . . . , n − 1. (13)

The generalized differential operator corresponding to
the Cauchy problem (12), (13) reads [17]:

D := Dc + u1Du0 + · · · un−1Dun−2

+P
(
c, u0, . . . , un−1

)
Dun−1 . (14)

Operators Dα correspond to partial differentiation with
respect to the index variable.

The general series solution to (12), (13) can be writ-
ten using (14) [17]:

w = w
(
x; c, u0, . . . , un−1

) =
+∞∑

j=0

(x − c) j

j ! D j u0.

(15)

2.3.3 Linear recurring sequences and closed-form
solutions

Equation (15) generates a solution in power series form.
Closed-form solitary solutions can be obtained from
(15) if the sequence of coefficients p j := 1

j !D
j u0,

j = 0, 1, . . . , forms a linear recurring sequence [18].
In order to determine the existence of the closed-

form solitary solutions, a sequence of Hankel matrix
determinants is formed:

dk := det
[
p j+l−2

]
1≤ j,l≤k+1 . (16)

Since p j = p j
(
c, u0, . . . , un−1

)
are functions of ini-

tial conditions (13), determinants dk also depend on
c, u0, . . . , un−1.

If for any c, u0, . . . , un−1 and some m ∈ N, the
condition dm �= 0, dm+ j = 0, j = 0, 1, . . ., holds true,
the sequence

(
p j ; j = 0, 1, . . .

)
is a linear recurring

sequence with the following characteristic polynomial
[11]:
∣∣∣
∣∣
∣
∣
∣
∣
∣
∣∣

p0 p1 . . . pm
p1 p2 . . . pm+1
...

...
. . .

...

pm pm+1 . . . p2m
1 ρ . . . ρm

∣∣∣
∣∣
∣
∣
∣
∣
∣
∣∣

= 0. (17)

Consider that the roots ρ1, . . . , ρm of (17) are distinct.
Then, elements of

(
p j ; j = 0, 1, . . .

)
take the follow-

ing form:

p j =
m∑

k=1

λkρ
j
k , (18)

where λ1, . . . , λm are coefficients determined from a
linear system that is obtained by setting j = 0, . . . ,m−
1 in (18).

As shown in [18], if the following relations hold true:

Dλk = λkρk; Dρk = ρ2
k , (19)

then inserting (18) into series solution (15) yields the
rational closed-form solution:

w =
+∞∑

j=0

(x − c) j p j =
m∑

k=1

λk

+∞∑

j=0

(
ρk (x − c)

) j

=
m∑

k=1

λk

1 − ρk (x − c)
. (20)

If the polynomial (17) has one repeated root ρ0 :=
ρl = ρs , while the rest are distinct, then the sequence(
p j ; j ∈ Z0

)
has the following form:

p j = λ0ρ
j
0 + λ01 jρ

j−1
0 +

m∑

k=1
k �=l,s

λkρ
j
k . (21)

It is demonstrated in [18] that if conditions (19) hold
for roots ρk; k �= l, s and ρ0, λ00, λ01 satisfy:
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Dρ0 = ρ2
0 ; Dλ0 = λ0ρ0 + λ01; Dλ01 = 3λ01ρ0,

(22)

then the general series solution can be written in the
following closed form:

w =
+∞∑

j=0

(x − c) j p j = λ01 (x − c)
(
1 − ρ0 (x − c)

)2

+
m∑

k=0
k �=l,s

λk

1 − ρk (x − c)
. (23)

2.4 Inverse balancing technique

In order to construct solitary solutions to nonlinear dif-
ferential equations, it is essential to determine the max-
imum possible order of such solutions. The inverse bal-
ancing technique [21] is used to determine the maxi-
mum order and necessary existence conditions of soli-
tary solutions with respect to system parameters.

The main idea of the inverse balancing technique
is to express the differential equation parameters in
terms of the solution parameters. Inserting the soli-
tary solution as an ansatz into the differential equation
results in a systemof linear equationswith respect to the
parameters of the differential equation. If this system
is degenerate, the solitary solution of respective order
cannot exist. However, if the linear system is solvable
with some conditions imposed on the solution parame-
ters, solitary solutions exist and the imposed conditions
coincide with existence criteria for the considered solu-
tion [21].

The inverse balancing technique described above is
applied in Sect. 3 to the Hodgkin–Huxley equation in
order to determine themaximumpossible order solitary
solutions that the model admits.

3 The maximum possible order of solitary
solutions to the Hodgkin–Huxley model

The first step of the inverse balancing technique for the
Hodgkin–Huxley model is the application of transfor-
mation (9) to (3):

η2 x̂2 ŷ′′̂
x x̂ +

(
η2 + ηb

)
x̂ ŷ ′̂

x = a0 +a1 ŷ+a2 ŷ
2 +a3 ŷ

3,

(24)

where ŷ (̂x) = y(x). Dividing both sides of (24) by η2

transforms (24) into:

x̂2 ŷ′′̂
x x̂ + b̂x̂ ŷ ′̂

x = â0 + â1 ŷ + â2 ŷ
2 + â3 ŷ

3, (25)

where b̂ := 1 + b
η
, âk := ak

η2
; k = 0, . . . , 3.

Next, the solitary solution (10) is inserted into (25),
which, after simplification, results in the following
polynomial of x̂ :

σ
x̂2

ĉ2
Ỹ2

(
x̂

ĉ

)
+ σ

x̂

ĉ
b̂Ỹ1

(
x̂

ĉ

)
X

(
x̂

ĉ

)

= â0X
3
(
x̂

ĉ

)
+ σ â1X

2
(
x̂

ĉ

)
Y

(
x̂

ĉ

)

+ σ 2â2X

(
x̂

ĉ

)
Y 2

(
x̂

ĉ

)
+ σ 3â3Y

3
(
x̂

ĉ

)
, (26)

where

Ỹ1 := ĉ
(
Y ′̂
x X − X ′̂

xY
) ; (27)

Ỹ2 := ĉ2
(
Y ′′̂
x x̂ X

2 − X ′′̂
x x̂Y X − 2Y ′̂

x X + 2X ′̂
xY

)
.

(28)

Subtracting the left- and right-hand sides of (26) yields
a 3mth degree polynomial in x̂

ĉ . Equating the coeffi-
cients of this polynomial to zero results in 3m+1 linear
equations—if the obtained linear system is not degener-
ate (either in general or under some conditions for the
parameters of X, Y ), the considered equation admits
solitary solutions of the respective order.

Note that the Hodgkin–Huxley model can admit
first-order kink solitary solutions (m = 1) [20]. How-
ever, the main objective of this paper is to investi-
gate transient dynamics of the Hodgkin–Huxley model
by considering higher-order solitary solutions that are
obtained in cases m ≥ 2. Since kink solitary solutions
(case m = 1) are monotonous and do not exhibit tran-
sient dynamics leading to complex effects, such solu-
tions fall out of the scope of this study.

3.1 Bright/dark solitary solutions to (3)

Let the solitary solution order m = 2. Then collect-
ing terms of like powers of x̂ yields a system of seven
linear equations with respect to the system parame-
ters b, â0, . . . , â3. The solution to this linear system is
given in Appendix A. Note that there are five parame-
ters and seven equations; thus, to ensure the consistency
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of the linear system, the following conditions must be
imposed on the parameters of the solitary solution:

Y (x2)

Y (x1)
= x2

x1
; (29)

σ 3y1
3y2

3a3 + σ 2x1x2y1
2y2

2a2 + σ x1
2x2

2y1y2a1

+ x1
3x2

3a0 = 0. (30)

It can be observed that (29)–(30) hold true in the fol-
lowing two cases:

Case 1

x1x2 = y1y2. (31)

Inserting (31) into the results of the inverse balancing
technique leads to b = 0.

Case 2

x1 = x2 = 2y1y2
y1 + y2

. (32)

Analogously, this case leads to a3 = 0. However,
this case reduces the order of the nonlinearity of Eq.
(3) which results in the model not equivalent to the
Hodgkin–Huxley model. Thus, this case is not investi-
gated further in this paper.

Note that the balancing equations are also satisfied
when x1 = y1, x1 = y2 or x1 + x2 = y1 + y2 = 0;
however, these conditions result in kink solitary solu-
tions (since terms in the numerator and denominator
of (8) cancel) that, as mentioned previously, due to the
straightforward nature of their transient dynamics, are
out of scope of this study.

3.2 Higher-order solitary solutions

Consider third-order solitary solutions that are obtained
by setting m = 3 in (8). Note that solving the balanc-
ing Eq. (26) results in the following conditions on the
solution parameters:

x j1 = yk1; (33)

x j2x j3 = yk2 yk3 , (34)

where js; ks, s = 1, 2, 3, are distinct triples of numbers
from the set {1, 2, 3}.

It can be observed that condition (33) leads to a
bright/dark solitary solution, which has been already
discussed in the previous section.

4 Bright/dark solitary solutions to the
Hodgkin–Huxley model

Without loss of generality, (3) is transformed into a
different form:

y′′
xx = a3

(
y − h1

) (
y − h2

) (
y − h3

)
, (35)

where h1, h2, h3 are roots of the polynomial a3y3 +
a2y2 + a1y + a0.

4.1 Narrowed equations of the Hodgkin–Huxley
equation with b = 0

It can be demonstrated that solutions to (3) with b = 0
are obtained from a first-order differential equation of
the form:

z′x =
√
A0+A1z+A2z2+A3z3 + A4z4; A4 �=0;

(36)

z(c) = u. (37)

Denoting P(z) := A0+A1z+A2z2+A3z3+A4z4 and
applying the extension procedure detailed in Sect. 2.2
to (36) yield:

z′′xx = P ′
z

2
√
P(z)

z′x = 1

2

(
A1+2A2z+3A3z

2+4A4z
3
)

.

(38)

Renaming the function z to y yields the Hodgkin–
Huxley equation with b = 0:

y′′
xx = a0 + a1y + a2y

2 + a3y
3, (39)

where ak := k+1
2 Ak+1, k = 0, . . . , 3.

Let us consider initial conditions on (39) of the form
(4). Then, the solution to (36) is also a solution to (39)
with initial conditions (4) if and only if v = √

P(u).
Thus, the following relation holds true:

y
(
x; c, u,

√
P(u)

)
= z(x; c, u). (40)
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Note that the parameter A0 appears in (36), but not in
the coefficients of (39). This leads to the conclusion
that there is an infinite set of equations (36) (obtained
as A0 varies from −∞ to +∞) that lead to the same
Hodgkin–Huxley equation (39). Thus, for a fixed equa-
tion (39) and fixed initial conditions u, v, the algebraic
equation v = √

P(u; A0) can be solved with respect
to A0, which leads to a narrowed equation (36) corre-
sponding to the considered Hodgkin–Huxley equation
and its initial conditions. Furthermore, phase trajecto-
ries of solutions to (39) have the form y′

x = √
P(y).

4.2 Solitary solutions to the Hodgkin–Huxley
equation with b = 0

Applying the inverse balancing technique to (36) yields
that it admits solitary solutions only when it has the
following form:

z′x = A (z − z1)
√

(z − z2) (z − z3); A �= 0, (41)

where z1 is double root of P(z) and z2, z3 are single
roots of P(z). The relationship between parameters of
(40) and (35) reads:

a3 = 2A2; (42)

h1 = z1; (43)

h2 + h3 = 1

4
(2z1 + 3z2 + 3z3) ; (44)

h2h3 = 1

4
(z1z2 + z1z3 + 2z2z3) . (45)

The generalized differential operator technique descri-
bed in Sects. 2.3.2 and 2.3.3 is applied to derive soli-
tary solutions to (41) (and, in turn, (3) when ini-
tial conditions satisfy the relation v = A (u − z1)√

(u − z2) (u − z3)). The detailed explanation of the
construction of solitary solutions to (41) is provided in
Appendix B.

y′′
xx = 62 + 12y − 42y2 + 8y3; (46)

y (c) = u; y′
x

∣∣∣∣∣
x=c

= v; c, u, v ∈ R. (47)

Since b = 0, the above equation admits a solitary solu-
tion that satisfies the narrowed equation:

z′x = ±2 (z + 1)
√

(z − 4)
(
z − 5

); (48)

z(c) = s. (49)

The parameters of the narrowed equation are computed
using relations (42) – (45). Note that the solution to
(48) satisfies (46) only if initial conditions (47) satisfy

relation v = 2 (u + 1)
√

(u − 4)
(
u − 5

)
). The solitary

solutions to (46) are shown in Fig. 1. It is important to
note that there are two distinct types of solitary solu-
tions. Figure 1a corresponds to a bright solitary solution
(that does not have singularities), while Fig. 1b depicts
a solitary solution with two singularities.

5.2 The heteroclinic bifurcation

Equation (46) can be rewritten in the following form:

y′′ = 8
(
y − h1

) (
y − h2

) (
y − h3

)
, (50)

where h1 = −1, h2 = 1
8

(
25 − √

129
)

, h3 =
1
8

(
25 + √

129
)
. The phase plane that corresponds to

these parameter values is given in Fig. 2a. Note that
the solitary solutions only exist on the curve v =
2 (u + 1)

√
(u − 4)

(
u − 5

)
. Trajectories of the solitary

solutions lie on the stable and unstablemanifolds of one
of the model’s saddle points. Also, the non-singular
solution is a separatrix that separates periodic and non-
periodic solution trajectories.

Let h2 be the control parameter. Note that in Fig. 2a,
h2 < h1+h3

2 . As h2 approaches the midpoint between
h1 and h3, the distance between the trajectories denoted
by thick gray and black lines in Fig. 2a decreases and
these trajectories merge at h2 = h1+h3

2 , forming a het-
eroclinic orbit (see Fig. 2b).

The case h2 = h1+h3
2 produces a kink solitary solu-

tion. (This can also be noted from conditions (42)–
(45) which give z2 = z3 and result in a Riccati nar-

5 The symmetry breaking effect

5.1 Solitary solutions to the Hodgkin–Huxley model

Let us consider the following Hodgkin–Huxley equa-
tion:
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(a) (b)

Fig. 1 Solitary solutions to Hodgkin–Huxley model (46) with initial conditions c = 0, u = 2, v = 6
√
6 (in a); c = 0, u = −3, v =

−8
√
14 (in b). Dashed lines denote singularity points of the solitary solutions that occur at x = 1

2
√
30

log (
√
14±1)

√
30+15

(
√
14±1)

√
30−15

rowed equation.) The kink solution corresponds to het-
eroclinic trajectories (thick gray lines in Fig. 2b). In
addition to the kink solution, two solitons with one sin-
gularity are observed in the system (thick black lines in
Fig. 2b). An equivalent effect is observed in theDuffing
equation—kink solitary solutions also form a hetero-
clinic orbit [22].

The case h2 > h1+h3
2 does not produce results that

are symmetric with respect to solitary solutions to the

ones presented in Fig. 2a. Selecting h2 =
√
129
4 − 1

(a point that has the same distance from h1+h3
2 as the

value of h2 used to generate Fig. 2a) yields the phase
plane depicted in Fig. 2c. Solitary solutions satisfying
the narrowed equation of the form (41) still exist in
this system, but they do not correspond to the separa-
trix between periodic and non-periodic solutions (thick
gray and black lines in Fig. 2b). However, the separa-
trix trajectory still exists in a symmetrical manner to
Fig. 2a, but the solutions that correspond to it do not
come from (41). Furthermore, the derivations presented
in Sect. 3.1 indicate that solitary solutions satisfying
the Hodgkin–Huxley model (50) must satisfy the con-
dition x1x2 = y1y2, which leads to the conclusion that
the separatrix of the phase plane shown in Fig. 2c does
not correspond to a solitary solution.

Phase plane symmetry breaking effect with respect
to solitary solutions is demonstrated in Hodgkin–
Huxley model. First, the solitary solutions form a sep-
aratrix between periodic and non-periodic solution tra-
jectories. When the control parameter reaches the crit-

ical value resulting into the heteroclinic bifurcation,
the orbit connecting two saddle points transforms into
the kink solitary solution. When the control parame-
ter exceeds the critical value, the phase plane topology
remains analogous to the case before the bifurcation—
however, trajectories of dark and bright solitary solu-
tion do no longer correspond to the separatrix.

6 Discussion

As mentioned in “Introduction,” the paradigmatic
conductance-based Hodgkin–Huxley model describes
the dynamics of action potentials in neurons. Differ-
ent variations of the Hodgkin–Huxley model (includ-
ing generic phase oscillators) have been used to model
the time evolution of neuronal dynamics by associating
the equations of the system with the dynamics of the
dendrite and the phase dynamics of the axon, respec-
tively [8]. The incorporation of the dendritic dynamics
into a model of a generic phase oscillator significantly
changes the dynamics of the network of neurons. Two
stable regimes can coexist: the quiet regime where all
neurons stop firing and the oscillatory synchronized
regime,where the stimulation only alters the firing rates
of neurons [14].

The coexistence of two different states (attractors) of
a dendritic neuron makes possible to design different
desynchronization techniques based on neuron phase
resetting pulses [27]. These control techniques are typ-
ically based on short pulses which shift the evolution
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Fig. 2 Symmetry breaking
effect in the
Hodgkin–Huxley model for
h2 < h1+h3

2 (a),
h2 = h1+h3

2 (b) and
h2 > h1+h3

2 (c). Thin black
lines in both parts
correspond to solution
trajectories. Diamonds at
(h1, 0) and (h3, 0) denote
saddle points; the square at
(h2, 0) corresponds to a
center equilibrium point.
The thick gray and black
lines in a correspond to the
dark/bright solitary
solutions depicted in
Fig. 1a, b respectively. In b,
thick gray lines denote kink
solitary solution
trajectories; thick black
lines denote trajectories of
solitary solutions with one
singularity. In c, thick gray
and black lines denote
trajectories that correspond
to solitary solutions with
one singularity. These
solution are neither
dark/bright nor kink-type
solutions

(a)

(b)

(c)
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of the neuron dynamics from the basin boundary rep-
resenting the firing neuron to another basin boundary
representing the quiet neuron [25].

It appears that the derived solitary solutions to our
model do define the separatrix between different basin
boundaries in our model before the emergence of the
symmetry breaking effect. In other words, the analytic
expression of solitary solutions could be beneficial for
the accurate selection of the magnitude of the control
pulse. The zone bounded by thick gray lines in Fig. 2a
corresponds to the quiet neuron. However, thick gray
lines do open after the emergence of the symmetry
breaking effect (Fig. 2c) and do not bound a finite area
in the phase plane. The analytic expression of solitary
solutions would not be helpful for the selection of the
magnitude of the control pulse if h2 > h1+h3

2 .
As mentioned previously, generic phase oscillators

are commonly used for the description of the dynamics
of dendritic neurons. One of the classical techniques
used for the control of such models of neurons is based
on small control pulses which bring the evolution of
the neuron from one basin boundary to another basin
boundary.Our results demonstrate that analytic solitary
solutions do not determine a separatrix between differ-
ent basin boundaries after the emergence of the symme-
try breaking effect. This is an interesting result which
can be beneficial for the design of control techniques
applicable to different models of dendritic neurons.

7 Conclusion

Necessary and sufficient existence conditions for
second-order solitary solutions to theHodgkin–Huxley
model have been obtained using the inverse balanc-
ing and generalized differential operator techniques.
Analytical dark/bright solitary solutions have been con-
structedwhich enables the consideration of the symme-
try breaking effect occurring in the Hodgkin–Huxley
model. Using one root of the right-hand side polyno-
mial of the Hodgkin–Huxleymodel as a control param-
eter reveals three distinct topological structures of the
phase plane.

First, the dark/bright solitary solution trajectories
form a separatrix between periodic and non-periodic
solutions. A heteroclinic orbit composed of the tra-
jectories of two kink solitary solutions appears when
the control parameter reaches the critical value. As the
control parameter exceeds the critical value, the het-

eroclinic orbit is replaced by a new separatrix with
a different orientation. However, this new separatrix
is not composed of solitary solutions. Therefore, the
Hodgkin–Huxley system exhibits symmetry breaking
behavior of solitary solutions in the phase plane. Such
a complete analytical study of the solitary solutions to
the Hodgkin–Huxley equation provides deeper insight
into the nonlinear dynamics of this seminal model.
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Apppendix A: Details of the application of the
inverse balancing technique to the Hodgkin–Huxley
equation

Setting the solitary solution order to m = 2 transforms
(26) into:

ησb
x̂

ĉ
X

(
x̂

ĉ

)(

X

(
x̂

ĉ

) (
2
x̂

ĉ
− y2 − y1

)

− Y

(
x̂

ĉ

) (
2
x̂

ĉ
− x2 − x1

))

+ 2η2σ
x̂2

ĉ2

( (

X

(
x̂

ĉ

))2

− X

(
x̂

ĉ

)
Y

(
x̂

ĉ

)

− X

(
x̂

ĉ

) (
2
x̂

ĉ
− y2 − y1

)

×
(
2
x̂

ĉ
− x2 − x1

)
+Y

(
x̂

ĉ

)(
2
x̂

ĉ
− x2 − x1

)2
)

= â3σ
3

(

Y

(
x̂

ĉ

))3

+ â2σ
2

(

Y

(
x̂

ĉ

))2

X

(
x̂

ĉ

)

+ â1σY

(
x̂

ĉ

)(

X

(
x̂

ĉ

))2

+ â0

(

X

(
x̂

ĉ

))3

.

(51)

Taking x̂ = ĉx1, x̂ = ĉx2, x̂ = ĉy1, x̂ = ĉy2, x̂ =
ĉ(x1 + x2)/2,̂x = ĉ(y1 + y2)/2 and x̂ = 0 results in
seven linear equations. The solutions to these equations
with respect to b, â0, . . . , â3 are given as follows:

â3 = 2

(
ηx1 (x1 − x2)

σY (x1)

)2

; (52)

â0 = −2y1y2ση2 (Θ1 + Θ2)

Ω1
,
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b = −η +
2

(
y2X

(
y1

)
Θ2 − y1X

(
y2

)
Θ1

)

(
y2 − y1

)
Ω1

, (53)

where

Θ1 := y1X
(
y2

) ((
y2 − y1

) (
x1 + x2 − 2y2

) − X
(
y1

)) ;
Θ2 := y2X

(
y1

) ((
y1 − y2

) (
x1 + x2 − 2y1

) − X
(
y2

)) ;
Ω1 := X

(
y1

)
X

(
y2

) (
y2X

(
y1

) + y1X
(
y2

))
. (54)

â1 = 1

Ω2
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Λ10â0 + Λ13â3 + Λ3
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â2 = 1
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where

τx := x1 + x2
2

, τy := y1 + y2
2

,

Φ1 := 2τ 2x X
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Appendix B: Construction of solitary solutions to
(41)

An independent variable transformation (9) is applied
to (41):

ηx̂ ẑ ′̂z = A( ẑ − z1)
√

( ẑ − z2)( ẑ − z3). (56)

Initial conditions (37) are transformed to:

ẑ (̂c) = u. (57)

The generalized differential operator with respect to
(56) reads:

D := Dĉ + 1

ηĉ
A (u − z1)

√
(u − z2) (u − z3)Du .

(58)

Computing Hankel determinants (16) for the sequence
p̂ j := 1

j !D
j u; j = 0, 1, . . ., yields the following rela-

tion:

d4= 1

η12ĉ12

(
η2 − A2 (z1 − z2) (z1 − z3)

)
f
(
η, u

)
,

(59)

where f
(
η, u

)
is a polynomial in η, u. The above equa-

tion yields that d4 = 0 only if:

η = ±A
√

(z1 − z2) (z1 − z3). (60)

Equation (56) can admit closed-form solutions only if
conditions (19) hold true. To verify (19), the charac-
teristic roots ρ̂k, k = 1, 2, 3, are computed from the
characteristic polynomial:
∣∣∣∣
∣∣∣∣∣

p̂0 p̂1 p̂2 p̂3
p̂1 p̂2 p̂3 p̂4
p̂2 p̂3 p̂4 p̂5
1 ρ̂ ρ̂2 ρ̂3

∣∣∣∣
∣∣∣∣∣

= 0. (61)

Solution to (61) reads:

ρ̂1 = 0; (62)

ρ̂2 = 1

2̂c (z1 − z3) (z1 − z2)( (
±√

(u − z2) (u − z3) + u − z1
)

× √
(z1 − z2) (z1 − z3) − (z1 − z2) (z1 − z3)

)
;

(63)

ρ̂3 = 1

2̂c (z1 − z3) (z1 − z2)( (
±√

(u − z2) (u − z3) − u + z1
)
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× √
(z1 − z2) (z1 − z3) − (z1 − z2) (z1 − z3)

)
.

(64)

Formula (18) together with (62)–(64) yields:

p̂ j = λ10
j + λ2ρ̂

j
1 + λ3ρ̂

j
2 . (65)

Note that 00 := 1. Definition of the generalized dif-
ferential operator D and sequence p̂ j for j = 0, 1, 2
results in:

λ1 = z1; (66)

λ2 = p̂1ρ̂2 − p̂2
ρ̂1

(
ρ̂2 − ρ̂1

) ; (67)

λ3 = p̂1ρ̂1 − p̂2
ρ̂2

(
ρ̂1 − ρ̂2

) . (68)

Using (62)–(64) and (66)–(68), it is verified that con-
ditions (19) hold true; thus, the solution to (56) reads:

ẑ = z1 + λ2

1 − ρ̂2 (̂x − ĉ)
+ λ3

1 − ρ̂3 (̂x − ĉ)
. (69)

Using the inverse of transformation (9) yields the solu-
tion to (41):

z=
z1

(
exp

(
η (x − c)

)−α1

) (
exp

(
η (x−c)

)−α2

)

(
exp

(
η (x−c)

)−1− 1
ρ2

) (
exp

(
η (x − c)

)−1− 1
ρ3

) ,

(70)

where

ρk = ρk(u) = ĉρ̂k; k = 2, 3; (71)

and

α2 = 1

2z1

(
−K +

√
K 2 − 4z1L

)
;

α3 = − 1

2z1

(
K +

√
K 2 − 4z1L

)
. (72)

The functions K (u), L(u) have the following expres-
sions:

K = −
(

z1

(
2 + 1

ρ2
+ 1

ρ3

)
+ μ2

ρ2
+ μ3

ρ3

)

; (73)

L = z1

(
1 + 1
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)(
1 + 1
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)
. (74)
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