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Abstract We consider one applied global optimization problem where a set of fea-
sible solutions is discrete and very large. The goal is to find optimal perfect gratings,
which can guarantee high quality and security of the visual cryptography method.
A priori estimation techniques, such as branch and bound type methods, cannot be
applied to exclude an essential part of elements from the feasible set. Thus, a full
search is required to solve this global optimization problem exactly, which is very
computationally demanding. A library of C++ templates is developed that allows its
user to implement parallel master–slave algorithms for his/her application without any
knowledge of parallel programming API (application programming interface). Design
of the templates allows users to build a parallel solver using MPI (message passing
interface) API or distributed computing application using BOINC (Berkeley open
infrastructure for network computing) API from the same C/C++ code with imple-
mentation of application-specific tasks. We build parallel and distributed computing
solvers for the considered optimization problem and present results of computational
experiments using a computer cluster and BOINC project for volunteer computing.
Heuristic methods are also considered as an alternative to the full search algorithm.
Due to complicated conditions defining feasible solutions (perfect gratings), genetic
algorithms cannot be used to solve this problem efficiently. We propose two memetic
heuristic algorithms, when a basic stochastic or simplified full search algorithm is
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Saulėtekio av. 11, 10223 Vilnius, Lithuania

3 Research Group for Mathematical and Numerical Analysis of Dynamical Systems, 
Kaunas University of Technology, Studentu 50-222, 51368 Kaunas, Lithuania

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-016-1733-8&domain=pdf


Application of distributed parallel computing for dynamic. . . 4205

combined with a local search algorithm. Parallel heuristic algorithms are also pro-
posed and implemented. The efficiency and accuracy of heuristics are investigated
and results of experiments are presented.

Keywords Parallel algorithm · Programming templates · Distributed computing ·
BOINC · Dynamic visual cryptography · Heuristics

1 Introduction

The recent activities to construct exascale and ultrascale distributed computational
systems are opening a possibility to apply parallel and distributed computing tech-
niques for applied problems which previously were considered as not solvable with
standard computational resources. In this paper, we consider a global optimization
problem, where a set of feasible solutions is discrete and very large. There is no possi-
bility to applywell-known a priori estimation techniques to exclude an essential part of
these elements from the computational analysis, e.g. applying branch and bound type
methods [15]. Thus, a full search is required to solve this global optimization prob-
lem exactly.We note that in this paper some specific techniques (periodicity condition,
mirror transformation) are applied to reduce the size of the set of feasible solutions, but
they cannot change the general non-polynomial order of complexity of the algorithm.

The problem under consideration deals with the recently developed method for
chaotic dynamic visual cryptography [24]. Visual cryptography is a cryptographic
technique which allows visual information to be encrypted in such a way that the
decryption can be performed by the human visual system, without any cryptographic
computation. This concept was introduced by Naor and Shamir [22] in 1994 and it
gained a significant popularity due to a number of important applications [14,26].

In this paper, we solve a global optimization problem, which solution guarantees a
high quality and security of the considered method for dynamic visual cryptography.
The size of the optimization problem, which can be solved exactly, essentially depends
on the amount of available computational resources. Nowadays, the usual approach
to solve such problems is to employ parallel and distributed computing techniques.

The presented global optimization problem can be solved in parallel using well-
known master–slave programing model [17]. It is the main model used for solving
various optimization problems in parallel [8,28]. It is important for our goals that
master–slave model is well suited for heterogeneous and distributed computational
resources [18,21].

To build parallel and distributed solvers for the given optimization problem, we
have developed our own parallel programming templates (algorithmic skeleton) for
the master–slave paradigm. The idea of high level parallel programing frameworks is
still quite popular. It allows a user of such parallel programming templates or skeletons
to obtain a parallel solver for his problem without any parallel programing. He needs
only to implement application-specific parts of the algorithm, for example, for divide
and conquer or branch and bound algorithm [9], Tabu search method [5]. A recent
survey of parallel skeleton frameworks can be found in [13]. Our group has its own
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successful experience of development and usage of such parallel programing templates 
[3,27].

Design of programing templates developed in this work allows users to build a 
parallel application using MPI (message passing interface) API (application program-
ming interface) [20] or distributed computing application using BOINC (Berkeley 
open infrastructure for network computing) API [2] from the same C/C++ code with 
implementation of application-specific tasks. The BOINC middleware was initially 
developed for well-known SETI@Home project [16]. Currently, it is the most popular 
open-source middleware for volunteer distributed computing. It is used for distributed 
computing applications in such diverse areas as astrophysics [1], molecular biology [4], 
medicine, climatology, linguistics, mathematics, and others. Millions of volunteers are 
providing resources of their computers to such scientific projects.

It is well known that heuristic algorithms present an alternative approach to full 
search algorithm, when approximate solution, which is obtained in reasonable time, 
produces sufficiently good results. This approach is currently used for the considered 
visual cryptography method [23]. However, more research is needed to investigate the 
quality of different heuristic algorithms. First results of this research were presented 
in [6]. We show that popular genetic algorithms cannot be used for the given prob-
lem. Due to complicated conditions defining feasible solutions (perfect gratings), the 
crossover of two perfect gratings is not producing a new feasible solution. A mutation 
procedure also in most cases produces non-perfect gratings.

The second objective of this paper is to investigate parallel heuristic algorithms for 
our global optimization problem. Two heuristics, as an alternative for the full search 
algorithm, are proposed. They are based on templates of memetic search algorithms 
for global optimization [11]. Our aim is to investigate the efficiency of such algorithms 
in the case when the set of feasible solutions is described by complicated non-local 
requirements.

The rest of this paper is organized as follows. In Sect. 2, the discrete global optimiza-
tion problem is formulated. A set of feasible solutions (perfect gratings) is described 
and the optimality criterion for finding the optimal perfect gratings is defined. The par-
allel master–slave type algorithm for full search is presented in Sect. 3. Two heuristic 
algorithms, as an alternative for full search algorithm, are proposed in Sect. 4. In  
Sect. 5, we present developed programing templates, which allow users to build par-
allel MPI applications and distributed BOINC applications. Results of computational 
experiments are presented in Sect. 6. Some final conclusions are made in Sect. 7.

2 Discrete global optimization problem

First, we present the most important details on the chaotic dynamic visual cryptography 
method. A full description of this method can be found in [24]. The image hiding 
method is based not on the static superposition of shares, but on the time-averaging 
moiré gratings. It is important to note that using this method only one slide is generated. 
The secret image can be seen by a human visual system only when the encoded image 
is harmonically oscillated in a predefined direction at strictly defined amplitude of 
oscillation.
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Function F(x) defines a greyscale grating function if the following requirements
are satisfied:

(i) The grating is a periodic function F(x + λ) = F(x), where λ is the pitch of
grating, and 0 ≤ F(x) ≤ 1;

(ii) m-pixels n-level greyscale function Fmn(x) is defined as:

Fmn(x) = yk
n

,
(k−1)λ

m
≤ x ≤ kλ

m
,

where k = 1, . . . ,m, 0 ≤ yk ≤ n.

Not any grating function can be used in applications of dynamical visual cryptog-
raphy. We will consider a subset P of perfect greyscale step functions; they satisfy the
following additional requirements:

(1) The grating spans through the whole greyscale interval:

min
1≤k≤m

yk = 0, max
1≤k≤m

yk = n.

(2) The average greyscale level in a pitch of the grating equals n/2:

γ := 1

m

m∑

k=1

yk = n

2
.

(3) The “norm” of the greyscale grating function must be at least equal to the half of
the norm of the harmonic grating:

‖F‖ ≥ 1

2
‖F̃‖ = 1

2π
, ‖F‖ := 1

λ

∫ λ

0

∣∣∣∣F(x) − 1

2

∣∣∣∣ dx .

(4) The pitch of the grating λ must be strongly identifiable. The main peak of the
discrete Fourier amplitude must be at least two times larger compared to all
remaining Fourier modes:

√
a21 + b21 ≥ 2

√
a2j + b2j , j = 2, 3, . . . ,m − 1,

where the function F is expanded into the Fourier truncated series:

F(x) = a0
2

+
m−1∑

j=1

(
a j cos

2π j x

λ
+ b j sin

2π j x

λ

)
.

The optimality criterion for finding the optimal perfect grating function is defined
as:

δ(F0
mn) = max

Fmn∈P
min
s∈S1

(
σ
(
Hs(Fmn, ξ̃s)

))
, (1)
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where the standard deviation of a greyscale step grating function oscillated harmoni-
cally is given by (s is the oscillation amplitude):

σ
(
Hs(Fmn, ξ̃s)

) =
√
2

2

√√√√
m−1∑

j=1

(a2j + b2j )J
2
0 (2π js/λ),

where J0 is the Bessel function of the first type.
Theminimization tasks for finding optimal oscillation amplitudes s ∈ S1 are solved

by the golden section search method [10].
Next, we present results of one application of this cryptography technique. The

secret dichotomous image is presented in Fig. 1a. The encoded cover image (using
the near-optimal moiré grating) is illustrated in Fig. 1b. The pitch of the moiré grating
used for the secret image is 22 pixels. The pitch of the grating used for the background
comprises 21 pixels. Phase matching and chaotic scrambling algorithms are used for
embedding the secret image into the cover image [24]. The size of the cover image
is 153.7 mm × 132 mm. The pitch of the moiré gratings in the areas occupied by the
secret image and the background is 3.946 and 3.77 mm, respectively. Oscillations of
the cover image according to the triangular waveform leak the secret at the amplitude
of 1.97 mm in the time-averaged image (see Fig. 1c). Note that the near-optimal moiré
grating is transformed into a uniform moiré fringe in the areas occupied by the secret
image in the time-averaged image. Contrast enhancement techniques can be used to
highlight the secret in the time-averaged image (see Fig. 1d) [25].

3 Parallel master–slave algorithm for the full search

In previous section, we have formulated global optimization problem, where a set of
feasible solutions is discrete and very large. There is no possibility to apply some a
priori estimation techniques to exclude an essential part of these elements from the
computational analysis, e.g. applying branch and bound type methods [15]. Thus, a
full search is required to solve this global optimization problems exactly.

This global optimization problem can be solved in parallel using well-known
master–slave paradigm [17]. The parallel algorithm is defined as follows. A full set
D of possible gratings is generated by master process and decomposed into uniform
tasks, which are sent to slave processes. Slave processes receive these tasks from
master process and apply the following two-step algorithm for each grating from the
assigned task:

1. First, it is tested if all four conditions of perfect gratings are satisfied.
2. Second, for a perfect grating the value of the standard deviation of grating function

(1) is computed and the local optimal value is updated if a greater value is obtained.

After finishing their tasks, slave processes send obtained local optimal values with
the corresponding best perfect gratings back to the master process. Master process 
receives and compares new results with the best known perfect grating.

Note that all tasks are independent from each other, thus synchronization of tasks 
is fully avoided. Dynamic generation and scheduling of tasks of proper size should
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Fig. 1 Near-optimal moiré grating for visual decoding of the secret image. The secret dichotomous image
(857× 736 pixels) is illustrated in a; the encoded cover image is shown in b. The secret image is leaked in
a form of time-averaged moiré fringes in c; contrast enhanced time-averaged image is shown in d

ensure a good performance of this parallel algorithm on any parallel or distributed
computing system.

As it follows from the presented algorithm, the complexity of the full search sequen-
tial algorithm is of order

W = O(nmm logm). (2)

Here, the factorm logm arises due to the application of FFTalgorithm.The obtained
estimate shows a strong nonlinear dependence ofW on the grid sizem and the number
of greyscale levels n.

For industrial visual cryptography applications, gratings with 12 ≤ m ≤ 25 and
15 ≤ n ≤ 127 are considered. To reduce the size of feasible solutions set D, two
modifications of the basic algorithm are applied:

1. Due to the first condition of perfect gratings, a greyscale of the last pixel is fixed
to ym = 0.
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2. Theperiodicity condition andmirror transformationof pixels are applied to exclude
gratings, which were already tested during earlier stages of the full search algo-
rithm.

It should be noted that such modifications still not change (reduce) asymptotics of
the complexity of the proposed full search algorithm.

4 Heuristic algorithms

The presented parallel full search algorithm requires huge computational resources to
determine the optimal perfect grating in reasonable time for any significant problem
size. It is well known that for some similar discrete search problems, such as finding a
key of cryptographical DES algorithm [7] or reconstruction of input data for a known
hash function value [19]; the exact solution is the only meaningful solution, i.e. full
search is required.

Luckily, in visual cryptography in many cases, it is sufficient to find a good approx-
imation of the optimal perfect grating. Thus, heuristic methods can be considered as
an alternative to the full search algorithm.

The problem of finding optimal perfect grating is formulated as a discrete global
optimization problem. Thus, genetic evolutionary algorithms initially looked as a
natural approach [12]. Some preliminary results on application of genetic algorithms
are given in [6,23], where different modifications of the standard genetic algorithms
are used to find quasi-optimal perfect gratings.

However, our analysis shows that genetic algorithms cannot be used to solve
efficiently this problem. Due to complicated nonlocal conditions defining feasible
solutions (perfect gratings), the crossover of two perfect gratings is not producing a
new feasible solution (perfect grating). In most cases, a mutation procedure also is not
giving a new perfect grating. Thus, both two most important features of any genetic
algorithm are not working in proper way for finding optimal perfect gratings.

In this paper, we propose twomemetic heuristic algorithms, when a basic stochastic
or simplified full search algorithm is combined with a local search algorithm (see [11]
for introduction into metaheuristic methods).

4.1 Full search for reduced size gratings combined with local search algorithm
(FSRGLS)

Memetic algorithm FSRGLS is composed of two parts.

1. First, the full search algorithm is applied for reduced size gratings, e.g. gratings
with m/2 pixels and n/2 greyscale levels can be investigated. A solution is com-
puted using the proposed full search solver. Then, an initial approximation of a
large-scale grating is computed by doubling the number of pixels and preserving
the obtained relative values of greyscale levels.
In cases when a size of the reduced problem is still too large, a parallel version of
the full search solver is used.
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2. Second, a new set of feasible solutions is defined: each pixel can take a greyscale
level ỹ j in a small neighbourhood of y j :

DN (k) = {(ỹ1, . . . , ỹm) : −k ≤ y j − ỹ j ≤ k, j = 1, . . . ,m}.

It follows that the size of this set is O((2k + 1)m). In all numerical experiments,
we have restricted computations to the minimum value of stencil k = 1. Thus, the
complexity of one iteration of local search algorithm is defined by

W = 3mm logm. (3)

The second part of the proposed heuristic algorithm is also fully parallel. Schedul-
ing of tasks for parallel processes is implemented using the same template as for
parallel full search algorithm.
The new quasi-optimal grating is searched in DN (k). If a better solution is
obtained, then a set of feasible solutions is recomputed around a new optimal
solution y j = ỹ j , j = 1, . . . ,m and the local search step is repeated.

4.2 Random search method combined with local search algorithm (RSLS)

In this method, we employ a different first step.

1. First, we sample in random a set of gratings (stochastic search algorithm) using
a generator of pseudo-random numbers. The requirements of perfect gratings are
checked for any generated grating. The obtained set of perfect gratings makes a
subset of all feasible gratings.

2. Second, for a subset of generated perfect gratings, the local search algorithm of
FSRGLS is applied. This part of the algorithm is fully parallel.

In computational experiments, we have tested the quality of solutions obtained
using both heuristics. Results are presented in Sect. 6.3.

5 Master–slave parallel programing templates for MPI and BOINC

To build parallel and distributed applications for our problem, we develop our own
parallel programming templates (algorithmic skeleton) for themaster–slave paradigm.
The idea of such templates or parallel skeletons is to provide for user a possibility
to create parallel applications without any parallel programming and knowledge of
parallel programing API [3,9,13,27]. Such templates are reducing the time and efforts
needed for development of new parallel applications even for the experienced parallel
programmer.

The main idea of our programing templates is to obtain a distributed computing
application and parallel application from the same C/C++ code, which needs to be
provided by user and implements problem-specific parts of whole algorithm without
parallel programing API. In accordance with the master–slave paradigm [17], user
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needs to implement reading of the problem input, consecutive generation of single
jobs (tasks), solving of the single job (task), processing or merging of obtained results.

Let us now formulate the key features of developed master–slave parallel program-
ing templates:

– Design of the templates allows to build a parallel application using MPI API [20]
or distributed computing application using BOINC API [2] using the same C/C++
code with implementation of problem-specific tasks.

– The templates are built as a hierarchy of C++ classes. The basic classes implement
the basic functionality of any master–slave algorithm and ensure its workflow
including communication between the master and slave processes.

– The problem-specific parts of the algorithm need to be implemented in descendant
classes and placed in appropriate virtual functions.

– Input parameters and results of the job are exchanged between themaster and slave
processes using input and output files.

The usage of technology based on input and output files is not as efficient as a direct
message passing between processes. However, the performance overhead is negligible
for the coarse grained jobs. This requirement is satisfied for our problem, because we
can easily adjust the size of a single job. In turn, such an approach significantly simpli-
fies the template and allows efficient communication of input and output data between
the master and slave processes without problem-specific parallel programming.

Such an approach also allows the implementation of distributed computing applica-
tions. Currently, our programing tool allows easy and quick development of distributed
application for volunteer computing project based on the Berkeley open infrastruc-
ture for network computing (BOINC) [2], which is the most popular middleware for
volunteer distributed computing. Using our C++ templates, application for BOINC
project can be developed without any knowledge of BOINC API. Moreover, MPI ver-
sion of application solver is very useful in testing and debugging implementations of
problem-specific tasks.

Problem-specific tasks are separated and implemented in the followingC++ classes:

– WorkGenerator class
It reads the problem-specific input in its constructor, generates and writes to the
properly named file the input for the next job by consecutive calls to the problem-
specific function
GenerateInputForNewJob(FILE *jobInputFile),
which must be provided by the application developer.

– ClientApplication class
It reads the input file, which was generated byWorkGenerator, solves the job, and
writes the results to output file by calling problem-specific function
SolveSingleJob(const char* inputFileName, const char* outputFileName),
which must be provided by the application developer.

– ResultsAssimilator class
It is the processing results of the single job and merging them with previously
obtained results by calling problem-specific function
AssimilateResults(FILE *jobResultsFile),
which must be provided by the application developer.
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Results obtained from the BOINCproject users can be corrupted due to the different
reasons. They need to be validated before the assimilation—merging with previously
obtained results. This is a responsibility of BOINC project developer. In our pro-
graming template, we have included ResultsValidator class, which problem-specific
functionality should be implemented in function ValidateResults(FILE *jobInputFile,
FILE *jobResultsFile).

Note that this implementation can be tested on the computer cluster with paral-
lel MPI application before the deployment of distributed application to the BOINC
project.

6 Computational experiments

This section consists of four parts. First, we investigate the efficiency and scalability of
the parallel MPI implementation of full search algorithm on computer cluster. Then,
we investigate the performance of distributed application on our BOINC project. Next,
we study the quality of two proposed heuristic algorithms. Finally, we investigate the
scalability of the parallel MPI implementation of heuristic FSRGLS algorithm.

6.1 Performance of parallel MPI implementation of the full search algorithm

Parallel numerical tests were performed on the computer cluster “HPC Sauletekis”
(http://www.supercomputing.ff.vu.lt) at the High Performance Computing Center of
Vilnius University, Faculty of Physics. We have used up to eight nodes with Intel®

Xeon® processors E5-2670 with 16 cores (2.60 GHz) and 128 GB of RAM per node.
Computational nodes are interconnected via the InfiniBand network.

The parallel MPI implementation of the full search algorithm is built from master–
slave programing templates described in Sect. 5. According to the design of templates,
we have implemented the problem-specific parts of the parallel algorithm described
in Sect. 3.

To investigate the parallel performance of such implementation, we have restricted
to the analysis of quite small benchmark problem. We have solved the optimization
problem for m = 10, n = 15. In Table 1, we present the total wall time Ts,p×c in
seconds, when parallel computations are performed on a cluster with p nodes and
c cores per node, and s slaves have solved computational tasks. The master process
is responsible for generation and distribution of jobs and accumulation of results
from slave processes. On computer cluster with Portable Batch System (PBS) job
management, a separate core is allocated and used to run this part of the parallel
algorithm.Also, we present the values of parallel algorithmic speed-up Ss = Ts,p×c/s.

It follows from the presented results that the scalability of the parallel algorithm
and its implementation using developed templates are very good. Some degradation
of the efficiency for the largest numbers of parallel processes is explained by the load
imbalance for this relatively small problem. The total number of generated tasks is
801. Note that granularity (the size) of the task is easily adjustable in our algorithm.

In Table 1, we also show the efficiency of utilization of hyperthreading mode on
the computing node with 16 physical and 32 logical cores. Slight performance gains

http://www.supercomputing.ff.vu.lt
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Table 1 The total wall time Ts,p×c and speed-up Ss values for solving the grading optimization problem
with m = 10, n = 15 by parallel full search solver

1, 1 × 2 2, 1 × 3 4, 1 × 5 8, 1 × 9 15, 1 × 16 16, 1 × 17 31, 1 × 32

Ts,p×c 7512 3781 1876 937 499.6 488.5 464.8

Ss 1 1.987 4.00 8.01 15.03 15.4 16.2

31, 2 × 16 48, 3 × 16 63, 4 × 16 79, 5 × 16 95, 6 × 16 127, 8 × 16

Ts,p×c 245.5 165.6 124.5 100.8 86.4 65.6

Ss 30.6 45.4 60.3 74.5 86.9 114.4

can be observed using 17 and 32 parallel processes on the node: compare T15,1×16 to
T16,1×17 and T31,1×32.

The obtained estimate (2) of the complexity of full search algorithm allows us to
estimate quite accurately the total computation times required to find optimal perfect
gratings of increased sizes. For example, using results of previous computational
experiments we get prediction that a problem with m = 14, n = 19 on 8× 16 cluster
will be solved in T = 1478 days. We have solved this problem using our BOINC
project (for more details see the next subsection) in 73 days. The optimal perfect
grating

F0
14,19 = (18, 17, 15, 18, 18, 18, 0, 0, 0, 18, 3, 1, 0)

is used as a reference solution for testing the efficiency and accuracy of heuristic search 
algorithms FSRGLS and RSLS in Sect. 6.3. The quality of the obtained optimal perfect
grating is equal to δ(F0

14,19) = 0.067814.

6.2 Performance of distributed BOINC implementation of the full search
algorithm

As described in Sect. 5, we can obtain from our parallel programing templates not 
only a parallel solver built on MPI, but also a distributed computing application built 
on BOINC platform. This open source platform is commonly used for the creation of 
volunteer computing projects. Such projects attract volunteers from all over the world 
to donate their computational resources, usually idle computers, for the participation 
in scientific computations using developed distributed applications. This technology 
allows to accumulate potentially very significant computational resources and tackle 
otherwise unsolvable problems.

We have built the distributed computing application for finding optimal perfect 
gratings using developed programing templates. According to the design of our tem-
plates, work generator, client application, result assimilator and validator are reusing 
the problem-specific code, which was written and tested developing parallel MPI 
solver. The developed visual cryptography application was deployed to our volunteer 
computing project called VGTU project@Home at http://boinc.vgtu.lt.

http://boinc.vgtu.lt
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Currently, our project has accumulated over 1340 volunteers with 5057 computers,
which have registered on the project page and already earned some credits, i.e. per-
formed some work solving tasks sent from our project server. The important property
of volunteer computing projects is a highly variable speed of computations, which
depends on the number of currently active computers. Our work generator dynami-
cally adapts to the available computational resources—computers periodically asking
for tasks to solve.

To determine current and potential capability of this computing approach, we have
started from the problemwithm = 13 pixels and n = 17 greyscale levels. On our clus-
ter, this problemwould be solvedwith 8 nodes in 17.7 days. At VGTUproject@Home,
it was solved in 7 days. 168 users have participated in these computations with 700
computers. During these experiments, the aggregate speed of computations reached
625 GigaFLOPs. Again, we have noticed that the speed of computations was not con-
stant. All tasks were generated and sent to the users in 34 h. 80 % of the tasks were
solved in first three days.

We note that recently the computations of our project have attracted much more
participants and the aggregated speed reached 4.5 TeraFLOPS. As the number of
active users and their computers increases, we are going to solve increasable bigger
problems. However, for the real size problems, heuristic algorithms need to be used
so far. The speed of computations can also be increased with the development and
deployment of GPU application version for visual cryptography problem.

6.3 Heuristic search algorithms

As it was already noted, the developed full search algorithm requires huge computa-
tional resources and finding optimal real size gratings is still a great challenge even
for ultrascale distributed computational systems. Thus, the alternative approach based
on heuristic algorithms is very important for our problem. For considered problem, it
is often sufficient to find a good approximation of the optimal solution.

In this subsection, we present results of computational experiments for two heuristic
search algorithms proposed in Sect. 4. First, we have tested the accuracy and conver-
gence of these heuristics. We have used two benchmark problems with known optimal
perfect gratings. The first benchmark problem is obtained by finding the optimal per-
fect grating for m = 10 pixels and n = 15 greyscale levels. This problem is solved
exactly using the parallel full search solver. The obtained reference solution is

F0
10,15 = (13, 0, 9, 14, 10, 14, 10, 0, 0, 0)

and the standard deviation is equal to δ(F0
10,15) = 0.060384. This problem is solved

on 8 × 16 cluster in T127,8×16 = 65.5 s (see Table 1).
In the first step of FSRGLS heuristic solver, a reduced size optimal perfect grating

is computed for m = 5 pixels and n = 8 greyscale levels:

F0
5,8 = (7, 7, 1, 2, 0).
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Then, applying a local search algorithm an approximation of the optimal perfect
grating is computed for which the standard deviation is equal to δ(F1

10,15) = 0.05755.
It is important to note that CPU time for the full application of sequential FSRGLS
solver is only 2 s.

Next, the same problem is solved using RSLS heuristic algorithm. In the first step,
sets of 5000, 10,000 and 20,000 perfect gratings are generated using a generator of
pseudo-random numbers. This step required 2, 4 and 8 s of CPU time, respectively.
Then, applying a local search algorithm approximations of the optimal perfect grating
is computed with the following standard deviations:

δ(F5000
10,15) = 0.05985, δ(F10,000

10,15 ) = 0.05725, δ(F20,000
10,15 ) = 0.06018.

Comparing results of the FSRGLS and RSLS heuristic solvers, we can make a con-
clusion that for this benchmark problem the RSLS solver finds a better approximation
of the optimal grating, but the multiscale FSRGLS solver required less CPU time.

The second benchmark problem is obtained by solving a larger gratingwithm = 14
pixels and n = 19 greyscale levels. The optimal perfect grating was obtained using
the parallel full search solver on BOINC project in 73 days. On 8 × 16 cluster, this
problem would be solved in around 1478 days. We remind that the obtained reference
solution is

F0
14,19 = (18, 17, 15, 18, 18, 18, 0, 0, 0, 18, 3, 1, 0)

and the standard deviation is equal to δ(F0
14,19) = 0.067814. In the first step of

FSRGLS heuristic solver, a reduced size optimal perfect grating is computed for
m = 7 pixels and n = 10 greyscale levels:

F0
7,10 = (9, 8, 9, 1, 1, 3, 0)

and the standard deviation δ(F0
14,19) = 0.058469. Then, a local search algorithm is 

applied and after 12 iterations the optimal perfect grating is computed. It is important 
to note that CPU time for the full application of sequential FSRGLS solver is only 
26 s.

Next, the same problem is solved using RSLS heuristic algorithm. In the first step, 
a set of 40,000 perfect gratings is generated using a generator of pseudo-random 
numbers. This step required 129 s of CPU time and the best standard deviation is 
equal to δ(F14

40
,
,
19
000

) = 0.057186.
Then, a local search algorithm is applied for two initial approximations of gratings: 

the best one and a grating taken in random from the set of 20 best perfect gratings 
generated in the first step. After 6 and 11 iterations, we have computed approximations 
of the optimal perfect grating with the following standard deviations:

δ(F1
14,19) = 0.062554, δ(F2

14,19) = 0.066791.
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The CPU time for the local search algorithm of sequential RSLS solver is 19 and
36 s. It is interesting to note that a better approximation is computed starting from a
worser initial grating.

Comparing results of the FSRGLS and RSLS solvers, we can make a conclusion
that both heuristics can give quite good approximations of the optimal perfect gratings
after reasonable amount of CPU time. The FSRGLS solver has required incomparable
less CPU time and this property is explained by the fact that a structure of the initial
approximation obtained after solving a reduced size problem mimics the structure of
the optimal large size grating.

An increased amount of CPU time for the RSLS local search solver in comparison
with FSRGLS solver is explained by a more random distribution of maximum and
minimum greyscale levels in the initial gratings generated by the pseudo-random
algorithm. The quality of obtained gratings is not so good and the standard deviation
value is increasing very slowly when the number of generated gratings is increased.

So far, it is difficult to assess, which heuristic is more efficient. More research on
this topic is needed with not only mathematical, but also engineering interpretation of
the quality of obtained gratings.

6.4 Performance of parallel MPI implementation of the heuristic FSRGLS
algorithm

Next, we have used our parallel programing templates for a quick development of
parallel MPI-based versions of the FSRGLS and RSLS solvers. In this section, we
present scalability tests of the obtained parallel FSRGLS solver. We have solved the
optimization problem with m = 20 pixels and n = 29 greyscale levels; for this
problem, the optimal perfect grating is not known. Using the optimal perfect grating
for m = 10, n = 15, the following initial grating is used for a local search algorithm:

F0
20,29 = (26, 26, 0, 0, 18, 18, 28, 28, 20, 20, 28, 28, 20, 20, 0, 0, 0, 0, 0, 0).

The stencil width k = 1 is defined in all computational tests. Then, a local search
algorithm is applied and after 19 iterations an approximation of the optimal perfect
grating is computed

F20,29 = (28, 28, 0, 0, 10, 28, 28, 28, 28, 28, 15, 28, 23, 8, 0, 0, 0, 0, 0, 0),

forwhich the standard deviation is δ(F20,29) = 0.067549 (compare it with δ(F10,15) =
0.060384).

In Table 2, we present the total wall time Ts,p×c in seconds, when parallel com-
putations are performed on a cluster with p nodes and c cores per node, and s slaves
have solved computational tasks. Also, we present the values of parallel algorithmic
speed-up Ss .

It follows from the presented results that the scalability of the parallel algorithm
and its implementation using developed templates are very good.
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Table 2 The total wall time Ts,p×c and speed-up Ss values for solving the grading optimization problem
with m = 20, n = 29 by parallel FSRGLS solver

1, 1 × 2 2, 1 × 3 4, 1 × 5 8, 1 × 9 16, 1 × 17

Ts,p×c 241.2 120.6 60.60 30.55 16.22

Ss 1 1.999 3.981 7.897 14.87

7 Conclusions

In this paper, we have described the parallel programing templates (algorithmic 
skeleton) for the implementation of parallel master–slave type of algorithms. Only 
implementation of the problem-specific tasks must be provided by user. In implemen-
tation of these tasks, the user need not to use any parallel programing API. The user of 
our templates can generate parallel solvers using MPI API or distributed computing 
applications using BOINC API from the same problem-specific C/C++ code. This 
allows the development and testing of complicated distributed BOINC applications in 
more convenient MPI environment.

Using our templates, we develop first a parallel MPI implementation of full search 
algorithm for global optimization problem of dynamic visual cryptography. The results 
of computational experiments have confirmed good scalability of parallel full search 
algorithm and its implementation.

Next, we have automatically built a distributed computing application for full search 
algorithm on BOINC platform. Developed distributed application for dynamic visual 
cryptography has no scalability problems with the increasing number of computing 
hosts. The size of single task (workunit) can be easily adjusted.

Results of computational experiments have confirmed that BOINC platform 
presents an attractive alternative to supercomputer systems. Developed programing 
templates can significantly reduce the time and efforts needed for the development of 
BOINC applications, especially, for the problems with available sequential codes.

The size of the considered discrete global optimization problem is huge even for 
the modern high performance computing systems. Thus, heuristic methods are also 
considered as an alternative to the full search algorithm. We have found that stan-
dard genetic heuristic algorithms are not efficient for the considered problem. Poor 
performance of genetic algorithms is caused by the fact that mutation and crossover 
processes of two perfect gratings usually are not producing a new perfect grating. 
But exactly this step is the most important for obtaining efficient genetic algorithms 
solving discrete global optimization problems.

In this paper, two memetic heuristic algorithms are proposed. At the first stage, some 
approximations of gratings are computed by simple global optimization algorithms. At 
the second stage, local improvement algorithms are applied. For the local optimization, 
the modification of the full search algorithm is proposed. Performed tests show that 
both heuristics can give quite good approximations of the optimal perfect gratings 
after reasonable amount of CPU time. So far, it is difficult to assess, which heuristic 
is more efficient. More research on this topic is needed with not only mathematical, 
but also engineering interpretation of the quality of obtained gratings.
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Parallel heuristic solvers again are obtained using the described parallel templates.
Results of computational experiments confirm good scalability of obtained parallel
solvers.
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